

Automatic inference of cross-modal connection topologies for X-CNNs

Laurynas Karazija, laurynas.karazija@cantab.net

Computer Laboratory, University of Cambridge, UK

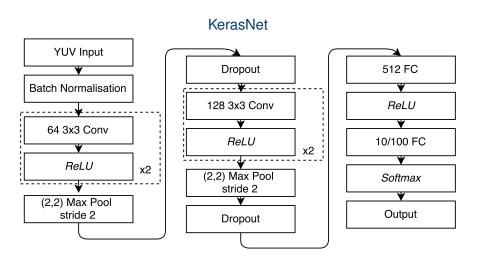
Overview

- Overview of the problem
- ▶ Contributions
- ► Cross-modal architectures
- Cross-modal connection
- ► Connection weight
- Xsertion
- Results
- Conclusions

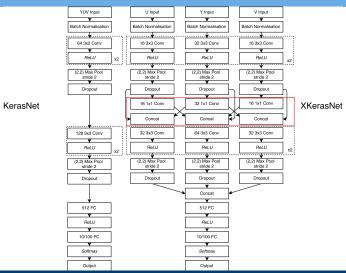
The problem

- ► Neural networks are great but require a lot of examples.
- Many field have very few examples but the data is wide multiple modalities are present.
- X-CNNs provide means to address this but are difficult to design.

The problem: CNN



The problem: CNN → X-CNN



Contributions

- Investigation into cross-modal architecture.
- Experimentation with X-CNN structure.
- Explanation of various parts of topology and their impact.
- Introduction of heuristics to decide topology.
- Proposal of a combined learning procedure to build the networks automatically.

Cross-modal connections

are a crucial aspects of the architecture. They join two super-layers together forming a connection from the *origin* super-layer to the *destination* super-layer.

- ► Provide extra-modal context to the feature detector aimed at a single modality via *feature transfer*.
- ► The key aspect of cross-modal networks that enables them to work in low data-availability environments.

Cross-modal connections

Cross-modal connections apply 1x1 convolution to provide additional information from other modalities. On lower lever, they:

- ► Apply an affine transformation of features,
- ► Compress the information transferred along the connections,
- Provide gating during training.

Formalising connections

Connection weight

- ▶ Let I_a , I_b be super-layers for modalities A and B.
- ► Connection weight is such a number $w_{l_a,l_b} \in [0,1]$, so that $w_{l_a,l_b} \ge 0.5$ if modality A is more informative than modality B.

Formalising connections

Connection weight

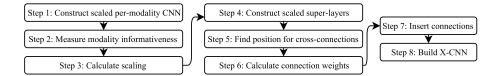
- ▶ Let l_a , l_b be super-layers for modalities A and B.
- ► Connection weight is such a number $w_{l_a,l_b} \in [0,1]$, so that $w_{l_a,l_b} \ge 0.5$ if modality A is more informative than modality B.

Formulation

▶ Let n_{l_a} , n_{l_a} be some measures of *informativeness*.

$$w_{l_a,l_b} = \frac{n_{l_a}^{\beta}}{n_{l_a}^{\beta} + n_{l_b}^{\beta}} \tag{1}$$

Xsertion



Results

CIFAR-10

Model\p%	20% (%)	40% (%)	60% (%)	80% (%)	100% (%)
FitNet XFitNet		$82.02 \pm 0.18 \\ 82.43 \pm 0.07$			
Xsertion	$\textbf{77.35} \pm \textbf{0.15}$	$\textbf{82.66} \pm \textbf{0.09}$	$\textbf{85.43} \pm \textbf{0.12}$	$\textbf{86.78} \pm \textbf{0.16}$	$\textbf{87.77} \pm \textbf{0.22}$

CIFAR-100

_Model \p%	20% (%)	40% (%)	60% (%)	80% (%)	100% (%)
FitNet	29.29 ± 1.69	40.91 ± 2.48	$\textbf{50.94} \pm \textbf{0.51}$	55.47 ± 0.96	58.92 ± 0.60
XFitNet	36.17 ± 0.27	48.02 ± 0.72	54.18 ± 0.36	57.98 ± 0.33	60.32 ± 0.29
Xsertion	$\textbf{38.59} \pm \textbf{0.37}$	$\textbf{50.11} \pm \textbf{0.30}$	$\textbf{55.48} \pm \textbf{0.41}$	$\textbf{59.06} \pm \textbf{0.63}$	$\textbf{61.67} \pm \textbf{0.31}$

Results: Residual Learning

- Applied to a variant of residual in residual network.
- Contained 12 residual blocks and used preactivations.
- ▶ Xsertion produced improvement 85.72% \rightarrow 88.81% and 55.43% \rightarrow 61.33% on CIFAR-10/100 respectively.

Learn connections and parameters simultaneously

Perform *gradient descent* in a parameter space that includes *all* potential connections. Use another procedure, gradient ascent, to *restrict* and *optimise* a set of axes for the gradient descent. This way both X-CNN the connections and parameters are trained.

Summary

- ► A method to automatically infer and construct cross-modal convolutional neural networks was produced.
- ► The models perform better than hand-constructed ones, taking less time to build.
- ► The library provides experimentation platform for ideas in cross-modality, whilst also impelling a way to apply a bleeding-edge idea in deep learning, inviting similar approaches to be taken in other research.

Thank you! Questions? Laurynas Karazija laurynas.karazija@cantab.net

